3 research outputs found

    Data hiding using integer lifting wavelet transform and DNA computing

    Get PDF
    DNA computing widely used in encryption or hiding the data. Many researchers have proposed many developments of encryption and hiding algorithms based on DNA sequence to provide new algorithms. In this paper data hiding using integer lifting wavelet transform based on DNA computing is presented. The transform is applied on blue channel of the cover image. The DNA encoding used to encode the two most significant bits of LL sub-band. The produced DNA sequence used for two purpose, firstly, it use to construct the key for encryption the secret data and secondly to select the pixels in HL, LH, HH sub-bands for hiding in them. Many measurement parameters used to evaluate the performance of the proposed method such PSNR, MSE, and SSIM. The experimental results show high performance with respect to different embedding rate

    Steganography using dual tree complex wavelet transform with LSB indicator technique

    Get PDF
    Image steganography is undoubtedly significant in the field of secure multimedia communication. The undetectability and high payload capacity are two of the important characteristics of any form of steganography. In this paper, the level of image security is improved by combining the steganography and cryptography techniques in order to produce the secured image. The proposed method depends on using LSBs as an indicator for hiding encrypted bits in dual tree complex wavelet coefficient DT-CWT. The cover image is divided into non overlapping blocks of size (3*3). After that, a Key is produced by extracting the center pixel (pc) from each block to encrypt each character in the secret text. The cover image is converted using DT-CWT, then the produced key is used to determine the starting pixel in each block for hiding and the direction of hiding (clockwise or anticlockwise). The proposed method is applied on many images with different embedding rate, and many metrics are used to evaluate the performance of the proposed method such as Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), correlation factor (CF) and Structural Similarity Index Measure (SSIM). It achieves in average 52.225 dB of PSNR, 0.3215 of MSE, 0.9952 of SSIM and 0.9997 of CF with embedding rate 1.5

    Accident Management System Based on Vehicular Network for an Intelligent Transportation System in Urban Environments

    Get PDF
    As cities across the world grow and the mobility of populations increases, there has also been a corresponding increase in the number of vehicles on roads. The result of this has been a proliferation of challenges for authorities with regard to road traffic management. A consequence of this has been congestion of traffic, more accidents, and pollution. Accidents are a still major cause of death, despite the development of sophisticated systems for traffic management and other technologies linked with vehicles. Hence, it is necessary that a common system for accident management is developed. For instance, traffic congestion in most urban areas can be alleviated by the real-time planning of routes. However, the designing of an efficient route planning algorithm to attain a globally optimal vehicle control is still a challenge that needs to be solved, especially when the unique preferences of drivers are considered. The aim of this paper is to establish an accident management system that makes use of vehicular ad hoc networks coupled with systems that employ cellular technology in public transport. This system ensures the possibility of real-time communication among vehicles, ambulances, hospitals, roadside units, and central servers. In addition, the accident management system is able to lessen the amount of time required to alert an ambulance that it is required at an accident scene by using a multihop optimal forwarding algorithm. Moreover, an optimal route planning algorithm (ORPA) is proposed in this system to improve the aggregate spatial use of a road network, at the same time bringing down the travel cost of operating a vehicle. This can reduce the incidence of vehicles being stuck on congested roads. Simulations are performed to evaluate ORPA, and the results are compared with existing algorithms. The evaluation results provided evidence that ORPA outperformed others in terms of average ambulance speed and travelling time. Finally, our system makes it easier for ambulance to quickly make their way through traffic congestion so that the chance of saving lives is increased
    corecore